Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
JCO Precis Oncol ; 8: e2300398, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662980

RESUMEN

PURPOSE: Ethnic diversity in cancer research is crucial as race/ethnicity influences cancer incidence, survival, drug response, molecular pathways, and epigenetic phenomena. In 2018, we began a project to examine racial/ethnic diversity in cancer research, with a commitment to review these disparities every 4 years. This report is our second assessment, detailing the present state of racial/ethnic diversity in cancer genomics and clinical trials. METHODS: To study racial/ethnic inclusion in cancer genomics, we extracted ethnic records from all data sets available at cBioPortal (n = 125,128 patients) and cancer-related genome-wide association studies (n = 28,011,282 patients) between 2018 and 2022. Concerning clinical trials, we selected studies related to breast cancer (n = 125,518 patients, 181 studies), lung cancer (n = 34,329 patients, 119 studies), and colorectal cancer (n = 40,808 patients, 105 studies). RESULTS: In cancer genomics (N = 28,136,410), 3% of individuals lack racial/ethnic registries; tumor samples were collected predominantly from White patients (89.14%), followed by Asian (7%), African American (0.55%), and Hispanic (0.21%) patients and other populations (0.1%). In clinical trials (N = 200,655), data on race/ethnicity are missing for 60.14% of the participants; for individuals whose race/ethnicity was recorded, most were characterized as White (28.33%), followed by Asian (7.64%), African (1.79), other ethnicities (1.37), and Hispanic (0.73). Racial/ethnic representation significantly deviates from global ethnic proportions (P ≤ .001) across all data sets, with White patients outnumbering other ethnic groups by a factor of approximately 4-6. CONCLUSION: Our second update on racial/ethnic representation in cancer research highlights the persistent overrepresentation of White populations in cancer genomics and a notable absence of racial/ethnic information across clinical trials. To ensure more equitable and effective precision oncology, future efforts should address the reasons behind the insufficient representation of ethnically diverse populations in cancer research.


Asunto(s)
Ensayos Clínicos como Asunto , Genómica , Medicina de Precisión , Humanos , Ensayos Clínicos como Asunto/estadística & datos numéricos , Neoplasias/genética , Neoplasias/etnología , Neoplasias/terapia , Etnicidad/genética , Etnicidad/estadística & datos numéricos , Oncología Médica , Grupos Raciales/genética , Grupos Raciales/estadística & datos numéricos
2.
Front Cell Dev Biol ; 11: 1088057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384253

RESUMEN

Colorectal adenocarcinoma (COREAD) is the second most deadly cancer and third most frequently encountered malignancy worldwide. Despite efforts in molecular subtyping and subsequent personalized COREAD treatments, multidisciplinary evidence suggests separating COREAD into colon cancer (COAD) and rectal cancer (READ). This new perspective could improve diagnosis and treatment of both carcinomas. RNA-binding proteins (RBPs), as critical regulators of every hallmark of cancer, could fulfill the need to identify sensitive biomarkers for COAD and READ separately. To detect new RBPs involved in COAD and READ progression, here we used a multidata integration strategy to prioritize tumorigenic RBPs. We analyzed and integrated 1) RBPs genomic and transcriptomic alterations from 488 COAD and 155 READ patients, 2) ∼ 10,000 raw associations between RBPs and cancer genes, 3) ∼ 15,000 immunostainings, and 4) loss-of-function screens performed in 102 COREAD cell lines. Thus, we unraveled new putative roles of NOP56, RBM12, NAT10, FKBP1A, EMG1, and CSE1L in COAD and READ progression. Interestingly, FKBP1A and EMG1 have never been related with any of these carcinomas but presented tumorigenic features in other cancer types. Subsequent survival analyses highlighted the clinical relevance of FKBP1A, NOP56, and NAT10 mRNA expression to predict poor prognosis in COREAD and COAD patients. Further research should be performed to validate their clinical potential and to elucidate their molecular mechanisms underlying these malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...